Code: CE4T6

II B.Tech - II Semester - Regular Examinations - May 2016

STRUCTURAL ANALYSIS - I
 (CIVIL ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks

$$
11 \times 2=22 \mathrm{M}
$$

1)

a) What are the limitations of method of sections approach?
b) What happens to the horizontal thrust in three hinged arch when there is a sudden rise in the temperature?
c) A fixed beam $A B$ of span ' L ' is loaded with a central load 'W', the support moment at A will be?
d) What are uses of influence lines?
e) A fixed beam of span L rotates by θ anti-clockwise at right support, what will be the reaction at right support?
f) What is the static indeterminacy of a fixed beam?
g) Mentions any two applications of cable structures.
h) What type of stress is dominant present in cables while they carry the loads?
i) Define Eddys theorem.
j) The moment at the intermediate support of a two span continuous beam of 6 m each with simple support at both
the ends carrying a uniformly distributed load of $20 \mathrm{Kn} / \mathrm{m}$ over the left span is?
k) Give any two applications of cable structures.
PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2) Determine the force in each member of the Pratt roof truss shown below.

16 M

3) A uniform load of $30 \mathrm{kN} / \mathrm{m}, 5 \mathrm{~m}$ long, crosses a girder 20 m span. Calculate the maximum +ve and -ve S.F at a section 8 m from the left support as well as B.M at a section 8 m from the left support. Also find absolute maximum shear force and absolute maximum bending moment in the beam. 16 M
4) A symmetrical 3-hinged parabolic arch has a span of 20 m . It carries UDL of intensity 10 kNm over the entire span and 2
point loads of 40 kN each at 2 m and 5 m from left support. Compute the reactions. Also find BM, radial shear and normal thrust at a section 4 m from left end take central rise as 4 m .
5) A beam $A B 6 m$ long is fixed at A and simply supported at B. The beam carries point loads 18 KN and 36 KN at distances 2 m and 4 m respectively from end A. Calculate support reactions at A and B. Find what couple should be applied at the end B so as to completely neutralize the moment at A .
6) Using Clapeyron's theorem of three moments for continuous beam shown below, determine moments M_{B} and M_{C}. The supports A, B and D sink by $1.5 \mathrm{~mm}, 3 \mathrm{~mm}$ and 2 mm respectively. Assume EI $=3 \times 10^{4} \mathrm{KNm}^{2}$. Draw the bending moment diagram.

